End-of-life management brings substantial benefits such as secured availability throughout the end-of-life phase, regulatory and environmental compliance, and cost reductions.

END-OF-LIFE MANAGEMENT

Phasing out a complex technical system or product is a demanding task. Proper planning is required in order to comply with the relevant legal, regulatory and environmental requirements. It is also vital to secure operational availability and the maintenance capacity required until the last day of use, in the most cost-efficient way possible.

Solutions/activities include:
- Forecast, plan and optimise spares provisioning and supply chain logistics
- Identify, analyse, manage and dispose of hazardous materials
- Identify, analyse and manage the affected maintenance and operational information in IT systems
- Analyse, archive and, where necessary, destroy technical information/documentation

EXPERIENCE AND EXPERTISE

Saab has over 75 years of experience as a manufacturer of complex technical systems and products, ranging from fighter jets and commercial aircraft through to radar systems and submarines. We take a whole lifecycle perspective and hold deep knowledge of end-of-life management.

Our personnel have the expertise required to ensure that the end-life of your systems and products is managed in the most effective way, combining regulatory compliance with cost efficiency.

Our end-of-life management services encompass all elements of the Integrated Logistics Support chain.
BACKGROUND
The Swedish Armed Forces used the Saab fighter jet A/C 37 Viggen between 1972 and 2007. Over 300 aircraft were manufactured, in both single and two-seat configuration. There were five versions covering a variety of different needs, including training, reconnaissance and attack.

CUSTOMER CHALLENGE
To achieve a cost efficient end-of-life phase for the Viggen fleet, while securing maintenance capacity and operational availability for the remainder of its service life.

RESULT
Use of Saab’s end-of-life management services for optimisation resulted in savings of over SEK 100 million (USD 14 million)* at the completion of the end-of-life phase.

This was achieved by applying Saab’s expertise and unique methodology for Part-out-Based Spares Optimisation (PBSO), which helps identify when to stop maintaining parts and instead discard them, considering the planned system end-of-life. The use of Saab’s PBSO methodology led to the identification of over 4,400 Line Replaceable Units which could be discarded.

*C:Additional cost savings generated for discarded Ground Support Equipment, shop replaceable units and reduced need of facilities.
OUR SERVICES

END-OF-LIFE MANAGEMENT SERVICES

- End-Of-Life Management Services
 - RADS (Risk Assessment at Disposal of System)
 - Analysis of end-of-life requirements
 - Information System Management
 - Supply Chain and Logistics Analysis
 - ILS/LSA Program Management Services
 - Logistics Information Solutions
 - Analysis of end-of-life requirements

- Recycling Manual
 - Archiving
 - Regulatory Documents Management
 - Warehouse Planning Services
 - Logistic Support Analysis
 - Logistics and Operational Analysis
 - Execution of phase-out

- Waste Management Services
 - Discarding
 - Logistic Operation Services
 - System Safety Services
 - ISAT System Support

- Modification Services
 - Configuration Management Services
 - Spares Provisioning
KEY INFORMATION

BENEFITS
- Cost savings through efficient and optimised execution of the end-of-life phase
- Secure fulfilment of regulatory, legal and environmental requirements applicable for the end-of-life phase
- Secure availability during the entire end-of-life phase while driving down costs

Saab as provider of end-of-life management services
- Successful completion of several end-of-life management projects covering air, land and naval domains
- Turnkey capability: ILS services for complete end-of-life management
- World-leading expertise and R&D focus
 - Doctor of technology level research studies: Part-Out-Based Spares Optimisation
 - Co-founder and steering committee member for several ILS standards
- More than 75 years of experience as an OEM of civil and defence products

REFERENCES
- Austrian Air Force (Saab 35 Draken)
- Swedish Air Force (Saab 105 – SK90)
- Swedish Air Force (Saab 37 Viggen)
- Swedish Air Force (Saab 35 Draken)
- Swedish Air Force (Saab 39 Gripen version A/B)
- Swedish Air Force (Helicopter 10 – Eurocopter AS332)
- Swedish Air Force (Helicopter 9 – Bölkow BO 105)
- Swedish Air Force (Helicopter 4 – Boeing Vertol 107)
- Swedish Air Force (Reconnaissance capsule SPK39)
- Swedish Air Force (Robot 75 – AGM-65 Maverick)
- Swedish Air Force (Radar PS-861)
- Swedish Army (UAV 01 Sagem Sperwer)
- Swedish Army (Battle Management System)
- Swedish Army (medical care system, Nordic Battle group 2011)
- Swedish Army (Forward Surgical Team & Dental Care Unit, Nordic Battle Group 2008)
- Swedish Navy (Combat Boat 90)
- Swedish Navy (Corvette Visby)
- Swedish Navy (Corvette Smyge)

STANDARDS AND SPECIFICATIONS
- ASD S-Series suite
 - S1000D Technical publications
 - S2000M Material Management
 - S3000L Logistics Support Analysis
 - S4000M Scheduled Maintenance Analysis
 - S5000F Operational and Maintenance Date Feedback
 - S6000T Training
 - S9000D Dictionary
- DEF-STAN 00-60
- IEC 15288 Systems Engineering
- IEC 60300 Dependability Management
- MIL-HDBK-217 Reliability Prediction of Electronic Equipment
- MIL-STD-882 System Safety Program Requirements
- MIL-STD-1388 Logistic Support Analysis
- MSG-3 Maintenance Planning

Specifications subject to change without notice. Actual performance depends on operational empty weight.