Along the world’s coastlines, the submarine is invaluable in maintaining maritime security. Saab’s **thinking edge** delivers effective solutions for Air-Independent Propulsion (AIP) submarine design and construction that allow our clients to enhance their capabilities and achieve smarter outcomes.

Saab’s Kockums A26 uses the latest stealth technology and advanced network-centric communication to allow submarines to integrate their communications with those of other defence forces and civilian agencies. Operational flexibility, together with a comprehensive weapons suite, enables it to carry out a wide variety of missions.

FLEXIBLE AND COMPREHENSIVE

In today’s ever-changing naval environment, Saab keeps ahead by developing the best technology crucial to crisis response, deterrence, peacekeeping and peace enforcement operations. The Kockums A26 combines ocean-going seaworthiness with regard to rough seas, long distances and Littoral Supremacy™ – making it the world’s most effective AIP submarine.

ENSURING MARITIME SECURITY

Saab combines technological innovation with strategic planning to give our clients the operational capabilities they need to deliver the results they desire.

The Kockums A26 is an effective addition to any modern naval force that can effectively carry out national defence tasks, intelligence gathering, surveillance and reconnaissance, offensive operations, anti-submarine warfare, mine-laying and special operations.
The powerful Kockums A26 submarine is designed for the following missions:

- Maritime security operations, including detecting and responding appropriately against illegal activities
- Intelligence operations, covert in hostile areas, including acoustic, visual, electronic and communication intelligence, which may entail deployment of unmanned maritime vehicles
- Covert mine countermeasure operations, including mine searching and clearance using unmanned underwater vehicles
- Special operations by carrying, deploying and retrieving special forces along with equipment and underwater vehicles
- Anti-submarine warfare by searching, locating and classifying approaching and attacking submarines, and by countering other submarines
- Anti-surface warfare where both internal sensor data and/or external target information is used
- Mine-laying in covert mode
- Underwater work such as manipulating, deploying, retrieving or destroying underwater objects and installations
The littoral zone – the shallow part of oceans nearest to the shore – is where much maritime activity occurs.

Intelligence gathering, surveillance and sea denial along coastlines are becoming increasingly important. Operations in shallow water enable submarines to carry out covert monitoring of targets on land or sea using a range of electro-optical and electromagnetic sensors. Moreover, the ability of a submarine to lie motionless on the ocean floor, or ‘bottom out’, makes it almost impossible to find.

SECURING TOTAL CONTROL
Submarine operations in the extreme littorals are also facilitated by the difficulty of carrying out anti-submarine warfare (ASW) in shallow water. A confusing combination of big thermal variations in water layers, unpredictable tides and currents, high reverberation and highly directional ambient noise defeats ASW measures.

This is why the next-generation Kockums A26 submarine, with superior GHOST® (Genuine HOlistic STealth) properties and AIP, is a valuable asset in securing total control in the extreme littoral zones, or as we call it, Littoral Supremacy™.

SECURING BLUE WATER CAPABILITY
Not only does Saab’s Kockums A26 submarine have excellent transit capability, but it can also operate in big oceans because of its:

- Long transit range
- Extensive endurance
- High snorting speed
- Deep diving ability
- High seakeeping performance
- Excellent crew comfort

The centre of attention for naval operations has shifted from blue water to the littoral zones of the world.
FREEDOM
Innovations contributing to greater freedom of action by the Kockums A26 submarine include optimised GHOST® for virtual invisibility, virtual invulnerability to underwater explosions, and excellent hydrodynamic properties that allow exceptional manoeuvrability. The Kockums A26 submarine combines solid design with the ability to keep a low profile.

ENDURANCE
The advanced Stirling AIP system used by the Kockums A26 enables prolonged submerged endurance and its silence is key to maintaining GHOST®. A comfortable environment for the crew increases its staying power and smart procedures are implemented to maximise submarine availability. Saab’s commitment to safety, along with extremely effective rescue methods, helps maintain high crew morale and confidence in the submarine.

MODULARITY
Our modular approach comprises flexible payloads for multimission capability, including sending special forces directly into the ocean and retrieving them via Saab’s Multimission Portal™. A sectional hull also means the submarine can be modified and future-proofed through rapid updating and reconfiguration.

INTEGRATION
The General Management Services System (GMSS) is the backbone of all information systems on board the submarine. Comprises an open architecture distributed system that integrates combat, ship control and administrative systems to assure exceptional mission control. A comprehensive, state-of-the-art sensor suite along with electronic warfare suites and network-centric communication enable outstanding situational awareness.
Sweden is unleashing its GHOST® (Genuine HOlistic STealth) technology, thus making the Kockums A26 submarine effectively invisible as all its signatures are lower than those of the Kockums Gotland Class submarine.

Extreme stealth is at the heart of the Kockums A26 submarine, and it depends on good design right from the very beginning. The holistic nature of optimised GHOST® covers all types of signatures to make it almost impossible to spot during silent service.

A SILENT SUBMARINE

Sweden has long experience in designing very silent submarines. In the Kockums A26 submarine, an extremely resilient platform technique incorporating extensive rubber mountings and baffles is used to minimise noise from operating machines and transient noise, as well as absorbing shocks. To further reduce emitted noise, the space between the frames is equipped with acoustic damping plates. This approach is used in combination with, for example, encapsulated Stirling and diesel engine modules; flexible hoses and compensators; and specifying maximum flow speed in air ducts, minimum bending radius on cables and pipes, and the design of out-board holes and cavities.

FURTHER WAYS OF MAINTAINING SILENCE

To become invisible, further ways of keeping silent are exploited by the Kockums A26 submarine:

- **The target strength** of the Kockums A26 submarine is minimal because of the vessel’s unique hull shape, the unique fin design, sonar and equipment accommodation, and a new type of surface acoustic absorption or reflection coatings. This highly optimised design also cuts the hydrodynamic signatures and flow noise around the submarine, both in deep water and near the surface.

- **The magnetic signature** is suppressed by an advanced degaussing system that is controlled by external sensors to facilitate compensation in all geographical locations and headings. Galvanic signatures, primarily electrical but including secondary magnetic signatures are reduced by a specially designed cathodic protection system and careful material selection that minimise electrical signatures without compromising the corrosion protection of the submarine.

- **Radar cross-section** has been reduced by carefully analysing and selecting the masts and mast-mounted sensors along with different coatings.

- **Infrared signatures** are also minimised using different coatings and smart system solutions. In addition, the IR signature is not an issue with the Stirling AIP engine because the pressure reduction of the exhaust gases reduces the temperature dramatically before they are totally dissolved in sea cooling water and released into the ocean.

Saab performs advanced FE-modelling of electromagnetic signatures.
VIRTUALLY INVULNERABLE TO UNDERWATER EXPLOSIONS

The Kockums A26 submarine is designed to withstand significant shock loads from underwater explosions, primarily of mines and depth charges. As mine detection by a submarine takes place at short range, shock resistance is imperative.

The hull of the submarine is constructed from special steels and the welding is tested using non-destructive methods to ensure its integrity and pressure-tightness. Materials technology, dimensioning and structural engineering are used to select the best materials to meet specifications, and strict quality assurance is applied to all construction and assembly procedures. All pressure-tight boundaries, including the weapon tube rear doors, are designed to withstand large underwater explosions even at a short distance.

FULL-SCALE SHOCK TESTS

Saab carries out realistic full-scale shock tests using depth charge explosions only a few meters from a complete vessel. The submarine is filled with sensors to monitor shock waves at different aspect angles and distances to produce a series of shock acceleration spectra.

Not only do such realistic tests enable Saab to test a hull’s resistance and the response of onboard equipment, but they also provide the crew with valuable experience with explosions. The full-scale shock tests, carried out with a full crew on board, are part of the acceptance tests for the submarine and also provide invaluable information for Saab to develop its program of continuous improvement.

IN GOOD SHAPE

Being able to quickly turn, rise and dive are valuable tactics when the occasion demands. A number of features make the Kockums A26 submarine highly manoeuvrable, a feature that contributes significantly to freedom of action. The X-rudder configuration with four independently controlled control surfaces enables the submarine to quickly change position or direction. When submerged, a very tight turning circle can be achieved at all speeds. Moreover, changes in depth can be performed quickly even at low speed because of the well-balanced metacentric height.
ENHANCED
AIP PERFORMANCE

The Kockums A26 submarine is dimensioned for nominal missions of 45 days and the Air-Independent Propulsion (AIP) technology allows the submarine to stay fully submerged for long periods of time during a mission.

The Stirling AIP system is regarded as the main propulsion system and is used for all submerged operations at patrol speed. It is extremely quiet and does not create any thermal (IR) signature. The diesel engines are used only for long distance transit at medium speed in either a surfaced or snorting condition.

Since the 1980s our Stirling AIP has been proven to be a mature and robust technology. It has been delivered to several export customers and attained over 20 years of operational service and several tens of thousands of running hours on board submarines. All Swedish submarines today have Stirling AIP.

Taking care of the AIP system is just as easy as keeping a common internal combustion engine in good condition. It is compact, modular and manageable, important spare parts can be stored on board, and the system can be maintained and repaired in situ by crew members, even while in operation during a mission.

The AIP system burns a mixture of gasified pure industrial liquid oxygen (LOX) and diesel fuel. The same low-sulphur diesel is used for both the diesel and Stirling engines. Thus both LOX and diesel enable cost-effective energy production and simple logistics.

A SAFE WORKING ENVIRONMENT

A satisfied crew contributes to increased working efficiency and smoother operations. Crew accommodation on the Kockums A26 submarine is good for work and leisure time, as well as for physical and mental wellbeing. It is based on Scandinavian design to give more comfort to crew members. In accordance with Swedish Navy requirements, the accommodation is based on the ‘hot bunk principle’ where two crew members share the same bunk in rotation. In this way the number of bunks can be kept low, thereby allowing the cabins to be made relatively spacious and comfortable in a light and pleasant environment. This is an important factor in recruitment.

A new way of thinking for modern submarine missions has now been matched by new thinking applied to habitability by Saab.

PUTTING SAFETY FIRST

To prevent flooding, the Kockums A26 submarine is designed in compliance with the Swedish Navy standard on submarine safety. All major pressure hull penetrations have double shut-off valves remotely controlled and activated by a flooding indication system, although manual override is possible. Should flooding occur, the emergency high-pressure air-blowing system is dimensioned to surface the submarine from a hovering state at maximum diving depth.

Fire protection is designed according to SOLAS requirements and further functional fire-protection requirements can be incorporated as demanded by the customer.

The submarine is divided into two pressure-tight compartments separated by a pressure-tight mid-tank section accessible from both compartments. If crew members need to evacuate, it is done through the escape tower located on top of the mid-tank section. Either a submarine rescue vehicle (SRV) can be used for collective rescue down to collapse depth or a single escape could be carried out at a maximum depth of 180 m.
SMART PROCEDURES

A submarine should be designed to allow good accessibility to all units requiring maintenance and to minimise maintenance times. This is what you get with the Kockums A26 AIP submarine, where increased availability, reliability, maintainability and supportability are key objectives. Preventive, corrective and mission-critical maintenance activities can be performed on the submarine by ordinary crew members using onboard spare parts and support and test equipment. And wherever possible, Saab uses COTS equipment rather than MIL-standard equipment to reduce repair costs and simplify work.
A key benefit in the design of the Kockums A26 submarine is its modularity, which provides an amazing degree of operational flexibility, future-proofs the vessel and contributes significantly to cost-effective construction and assembly.

Flexible payloads which apply to weapons and sensors, allow for the allocation of space for future but yet to be identified equipment. Up to eight divers including their equipment can be launched and retrieved through the Multimission Portal™. Unmanned underwater vehicles (UUVs), including remotely operated underwater vehicles (ROVs), can also be deployed through the portal.

Payload exchange – adaptable according to mission type. Mast modules can be exchanged, external payload space can be used for different equipment such as pressure-tight containers and underwater vehicles, and reconnaissance and rescue systems can be selected.

Distributed component production and assembly – like pre-outfitted deck platforms, and encapsulated Stirling AIP and diesel engines.

Extending systems – prepared for future upgrades. For example, a hull section can be inserted in the forward or aft compartment. In the forward section, additional space for accommodation, workstations and other equipment can be inserted. In the aft section, another diesel and/or Stirling AIP engine can be installed. An electrical system may also be extended to supply more consumers.

Extending range – by installing larger fuel tanks.

Easy system integration – with an open network customers can plug-in/plug-out equipment instead of time-consuming integration with complex wiring.

Software modules – modularity also covers the vast array of software programs that can be selected as modules to customise user needs.

THE MULTIMISSION PORTAL™ FOR DIVERSE MISSIONS

A key unique feature of the Kockums A26 submarine is the Multimission Portal™ designed to launch and retrieve diverse mission payloads, including those for special operations. The portal is arranged between the 53 cm weapon tubes and has a length of 6 m and diameter of 1.5 m in which up to 8 divers can sit ready for a mission in the sea.

At the end of the Multimission Portal™ is an ocean interface through which both divers and equipment used in various missions, including UUVs and ROVs, pass while the submarine is hovering or lying on the sea bottom. Mine countermeasures can also be launched through the portal. BIBS connections are present for use by divers, if necessary, while waiting to leave the Multimission Portal™.
The flexibility of design enables the Multimission Portal™ to be prepared for future payloads of unconventional shape and size such as different types of non-specified UUVs, sensor devices or other bottom-laying devices. Support systems for the portal include those for pressurisation and decompression of the portal, supervision and communication.

DETER ANY ADVERSARY

The Kockums A26 submarine weapons suite will deter any adversary. The main weapon is the 53 cm heavyweight torpedo, and 40 cm torpedoes and mines can also be carried and launched through the weapon tubes. A total payload of more than 15 53 cm weapons is possible. A missile system and a mast-mounted gun can also be integrated with the weapon system.

The submarine has a large flexible payload stowage compartment and other types of payload can also be carried externally in dedicated spaces under the deck. The weapon tubes and associated handling systems are dimensioned to allow various types of weapons to be used, including all existing torpedoes, missiles, mines and UUVs. As the tubes are flooded and drained by gravity, noise is suppressed during preparation for a weapon launch by eliminating the use of pumps or compressed air.

The submarine is equipped with all the necessary equipment on board to embark and disembark weapons at any harbour or from a service ship at sea. Weapons are embarked through a dedicated hatch in the deck and slid down on the weapon handling rack to the payload storage platform where they are lowered to the horizontal position. Disembarkation follows the reverse route.
In order to facilitate system integration, future upgrading and expansion, as well as reduce costs, all applicable management and control systems of the Kockums A26 submarine are interconnected through the vessel’s information network system, the General Management Services System (GMSS).

This is the backbone of all information systems on board and comprises an open architecture distributed system that integrates combat and ship control systems along with administrative applications. To cut lead times and costs, the GMSS is mainly based on easily obtainable commercial off-the-shelf (COTS) products, technologies and standards, adapted and/or applied to naval military applications.

All applicable subsystems are interconnected through the GMSS and operated from common multifunctional consoles (MFCs). GMSS access points throughout the submarine enable easy connection for a large number of additional MFCs, workstations and laptops.

All major ship systems are managed through the Ship Control and Monitoring System (SCMS), which is normally operated from selected operator positions, although it can also be operated from any MFC in the submarine. The SCMS is also based on COTS parts, and most components, networks, processors and power supplies are redundant with hot swap standby to ensure full functionality if the primary system is damaged.

DECENTRALISED COMBAT MANAGEMENT

The combat system of the Kockums A26 submarine is managed from a Saab combat management system (CMS) specially developed for this submarine. Notably, instead of being a central system to which all other systems are integrated, the CMS is a subsystem linked to the GMSS which communicates using open standards. This allows integrated systems, including the CMS, to be individually upgraded or exchanged, thereby greatly reducing project risks typically found with large, complex and highly integrated systems.

The CMS allows high-performance data exchange via the GMSS with other systems like sonar, Electronic Support Measures (ESM), weapon interface systems and the vessel control system. Like all other systems connected to the GMSS, the CMS can be operated from any MFC in the submarine.

Thanks to the mast-mounted optronic sensor, which eliminates a hull-penetrating periscope, an efficient arrangement is achieved with the control room located in the bow, equipped with eleven MFCs in a U-shaped configuration.

Network-centric communication facilitates contact with your forces on the sea and land, and in the air.
The tactical picture held in the CMS provides the basis on which tactical situation assessments and decisions are taken by the CMS operators or by automatic CMS functions. The tactical picture symbolises the tactical environment within the CMS based on sensor-detected entities in the environment of your own ship (organic), information received via data links (non-organic) and manually added information from the operators.

The CMS includes functions for target motion analysis (TMA) of the tracked target in relation to own-ship movements to calculate and present the optimal own-ship tactical response manoeuvres. The exchange of tactical information and operational commands and plans with other force units is possible via CMS tactical digital information links (TADIL). This also provides the ability to select radio silence as required by defence force emission control policies.

Both passive and active sonar systems are built into the Kockums A26 submarine. The comprehensive range of passive sonar arrays located around the submarine provides detection, tracking and analysis of hydro-acoustic signals in a large frequency range over a 360 degree span.

The active sonar system includes a mine and obstacle avoidance sonar (MOAS) mounted in the bow. The MOAS has large horizontal and vertical coverage with the capability to detect and localise both moving and non-moving objects in the water, on the surface and on the sea bed. It also provides a 3D view of underwater terrain for navigational or other purposes.

Comprehensive and advanced network-centric communication is built into the submarine based on an open platform to suit customer needs. External communication is via radio, hydro-acoustic and shore-connected communication. Radio communication with other units, special forces, shore and global maritime distress and safety systems (GMDSS) can be carried out both submerged and on the surface using VLF, LF, HF, UHF, GSM & 3G, IRIDIUM, IFF and UHF Satcom frequency bands. WAN/LAN connections and telephone lines are available in ports, and a communication buoy allows communication, even when the submarine is far beneath the surface.

The navigation system, operated from any MFC, is separate from the CMS but closely integrated. The system provides continuously updated navigational and environmental data to the submarine, and tools for navigating the submarine. In covert mode, navigational data is estimated only from passive sensors. When active systems are used, signature control is performed.
Saab has taken numerous measures to minimise the life cycle costs of the Kockums A26 submarine.

It is crucial to get the best out of this considerable investment by implementing measures that minimise running costs over the lifetime of the submarine. The major ones are summarised below.

- The modular concept is production-friendly by allowing pre-outfitted platforms to be constructed off site and delivered when required.
- Modularity allows continuous and straightforward adaptation or updating of systems and equipment to allow future-proofing of the submarine to attain the maximum life cycle.
- A high degree of automation of all management and control systems means that a smaller crew can carry out all the operational functions on board.
- Saab’s Integrated Logistics Support (ILS) extends the operational lifetime of the submarine. Our condition-based maintenance concept is stepwise to ensure that not everything needs to be replaced at the same time. This also maximises submarine availability.
- Advanced life cycle cost analysis is also conducted to ensure low operating and maintenance costs throughout the service life of the submarine.
- Saab uses COTS components instead of MIL-standard parts where possible to reduce repair costs and simplify work.
- Onboard maintenance of the Stirling AIP engines can be performed by the crew.
- Replenishment at sea can be carried out, including for the Stirling AIP system and torpedoes.

The Kockums A26 submarine is designed and developed from an economical perspective to provide a very cost-effective investment, when considering the decades during which it will be operational.
TECHNICAL SPECIFICATIONS - KOCKUMS A26 SUBMARINE

LENGTH	~62 m
DRAUGHT SURFACED	~6 m
DISPLACEMENT, SURFACED	~1800 tonnes
MAXIMUM DIVING DEPTH	> 200 m
STANDARD COMPLEMENT	26 persons
NUMBER OF WEAPON TUBES	4
WEAPONS	53 cm torpedoes, 40 cm torpedoes, mines
NUMBER OF HEAVY WEAPONS	> 15
MULTIMISSION PORTAL™	Length > 6 m, diameter > 1.5 m
UUV CAPACITY	Launch and recovery through Multimission Portal™

COUNTERMEASURES	Inboard/outboard countermeasures launchers
OPERATING SEA WATER TEMPERATURE	From -2 to + 32 °C
OPERATING SEA WATER DENSITY	1003 – 1032 kg/m³
TOTAL MISSION ENDURANCE	> 45 days
MAX. SUBMERGED AIP SPEED	> 6 knots
MAX. CONTINUOUS SNORTING SPEED	> 12 knots
AIP ENDURANCE AT PATROL SPEED	> 18 days
YOU CAN RELY ON SAAB'S THINKING EDGE TO DELIVER INNOVATIVE, EFFECTIVE PRODUCTS AND SOLUTIONS THAT ENHANCE YOUR CAPABILITIES AND DELIVER SMARTER OUTCOMES.